
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Applications of Divide and Conquer in the Buddy

System for Efficient Memory Allocations in

Operating Systems

Muhammad Rasheed Qais Tandjung - 13522158

Department of Informatics

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jalan Ganesha 10, Bandung

13522158@std.stei.itb.ac.id

Abstract— The divide and conquer algorithm is a powerful

paradigm in computer science, extensively utilized for solving

complex problems by breaking them into simpler subproblems.

This paper explores the application of the divide and conquer

strategy within the context of the Buddy System for memory

allocations in operating systems. The Buddy System, known for its

efficient memory management capabilities, leverages the divide

and conquer approach to handle memory allocation and

deallocation by recursively splitting and merging memory blocks.

Through theoretical analysis and empirical evaluation, we

demonstrate the effectiveness of this combined approach in

improving memory allocation speed. The results indicate that

applying divide and conquer techniques in memory allocations

significantly enhances overall system performance, making it a

robust solution for modern operating system memory

management challenges.

Keywords—Buddy System, Divide and Conquer, Efficiency

Optimization, Memory Allocation, Operating Systems

I. INTRODUCTION

Memory, sometimes referred to as primary storage or
random-access memory (RAM), is among one of the most
important components of a computer and its operating system.
The memory in a computer is the main location for temporarily
storing data and instructions during execution of user and system
processes. In the realm of computer science and operating
systems, efficient memory management is a pivotal factor that
significantly influences system performance and resource
utilization.

To address these challenges, the divide and conquer strategy
emerges as a powerful paradigm. Divide and conquer is a well-
established algorithmic technique that breaks a problem into
smaller, more manageable subproblems, solves each
subproblem recursively, and then combines the solutions to
solve the original problem.

The Buddy System operates on the principle of dividing
memory into partitions to accommodate memory requests. It
divides the memory into power-of-two sized blocks and
maintains a list of free blocks of each size. When a memory
request is made, the system searches for the smallest available
block that can satisfy the request. If a block is larger than

required, it is split into two "buddy" blocks, which can be
recombined when freed, thereby reducing fragmentation.

The primary motivation behind this research is to explore
how the divide and conquer strategy can be applied to memory
allocation to overcome its inherent limitations and improve its
performance. By decomposing complex memory allocation
problems into simpler subproblems, the divide and conquer
approach can offer more flexible and efficient memory
management solutions.

This research employs a comprehensive approach that
combines theoretical analysis, algorithm design, and empirical
evaluation. The study begins with an in-depth examination of
the existing memory allocation methods, identifying key areas
where the divide and conquer strategy can be integrated, mainly
using the proposed Buddy System allocation method.

II. THEORETICAL FRAMEWORK

A. Divide and Conquer

Fig. 1. Illustration of the divide and conquer algorithm.

Source: [2]

The divide and conquer algorithm is a fundamental strategy
in computer science and algorithm design, used to solve
complex problems by breaking them down into simpler
subproblems. The core idea involves three main steps: divide,
conquer, and combine.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

In the divide step, the original problem is divided into
smaller, more manageable subproblems. This division continues
recursively until the subproblems reach a base case, which is
typically simple enough to be solved directly. The conquer step
involves solving these smaller subproblems, often through
further recursive application of the divide and conquer strategy.

Once the subproblems are solved, the combine step merges
the solutions of the subproblems to form the solution to the
original problem. This merging process is crucial as it
synthesizes the results of the subproblems into a cohesive
solution. The efficiency of the combine step can significantly
affect the overall performance of the algorithm.

Divide and conquer algorithms are known for their
efficiency, particularly with problems that exhibit recursive
substructure and overlapping subproblems. They often lead to
algorithms with logarithmic or linearithmic time complexities,
making them suitable for large datasets and complex
computations. This approach also lends itself well to parallel
computing, as the independent subproblems can be solved
concurrently, further enhancing performance.

B. CPU Execution and the Memory Hierarchy

Fig. 2. Diagram of the memory hierarchy.

Source: [3]

In a computer, it is known of three, among many, of main
components for computer storage, typically ordered in a
pyramid structure known as a memory hierarchy. This structure
goes from the very top of the pyramid, which holds the fastest
as well as the most expensive types of storage, resulting in small
rooms for data, all the way to the bottom which holds the slowest
but most spacious types of storage.

The CPU executes millions of instructions per second, and
each of these instructions need to be stored in computer storage,
else the computer will not know what instruction to execute.
Because of the frequency of this action, the speed of which the
CPU finishes each execution matters, and a very slight delay in
instruction execution time can result in huge performance drops.

The register is the fastest type of computer storage, since it
is the one located the closest to the CPU. It is also the smallest
type of computer storage, typically only having room for a few
tens of kilobytes of data. This poses as a huge problem, since the
modern computer typically needs to execute billions to trillions

of executions in a short time interval, the volume of which
obviously a few kilobytes of storage could not handle.

The external disks, then, poses as a possible solution to this
storage problem. An average storage disk is typically able to
store up to hundreds of gigabytes, or even terabytes of data. It is,
however, a component external to the main computer system,
and therefore each access to a single unit of data will require I/O
transfer, typically taking enormously longer times to finish
relative to a single register access.

Thus the correct solution to this problem involves an
intermediary storage device in the middle of registers and
external drives in the memory hierarchy. This is where main
memory comes in. The main memory is a storage structure that
the CPU can access almost as fast as a register, but yet is able to
store gigabytes of data, making it the perfect component for
storing instructions and data of currently running tasks.

C. Main Memory

Fig. 3. An illustration of computer memory.

Source: [4]

Computer memory, to which the programmers are
concerned, is essentially just a large continuous array of bytes.
In this sense, memory holds a huge resemblance to external
storage drives (especially SSDs, sometimes also called non-
volatile memory nodding towards their similarity). This makes
sense in a functional aspect, since main memory is essentialy
just a storage device with fast access, typically used for currrent
execution instead of long-term data archives.

Fig. 4. Contiguous and non-contiguous memory allocation.

Source: [5]

Similar to how files are stored in external storage drives, how
the instruction and data of processes are stored in memory can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

be in one of two ways, contiguously allocated and non-
contiguously allocated, as illustrated in Fig. 3. Both methods
have their own advantages, with non-contiguous memory
allocation typically being used in most modern computers. This
paper will mainly focus on analyzing the efficiency of
contiguous memory allocation methods.

One of the most commonly used methods for contiguous
memory allocation is the first-fit method, where the memory
array is scanned sequentially until a hole large enough to fit a
certain process size is found. As expected, this algorithm would
have linear time complexity, since at worst-case, the entire
memory array would be checked.

D. Buddy System

Fig. 5. Illustration of the Buddy System memory allocation method.

Source: [6]

A possible alternative to the first-fit method is the Buddy
System, which works on blocks of memory of sizes powers-of-
two. The Buddy System starts with one large contiguous block
of memory, and for every memory allocation request it gets, it
will recursively split the block in half, until the smallest block
that is bigger than the requested amount is found.

Different from the sequential search approach used by the
first-fit method, the Buddy System uses a divide-and-conquer
aproach, where the problem (large block of memory) is
continuously split into smaller subproblems (smaller blocks).

III. METHODOLOGY

A. Overview of Simulation

With the theoretical frameworks of the divide and conquer
algorithm as well as memory allocation and the Buddy System
established, this paper will try to verify the efficiencies of divide
and conquer in memory allocations using a simulation of
memory and processes in Java using threads.

The implemented program will simulate both the standard
method of contiguous memory allocation, as well as the Buddy
System method using divide and conquer. The reason for
implementing both algorithms is for the ability to compare the
efficiency of both methods.

The simulation will first start with a pool of processes
queueing to be given memory space, each having its own size
and runtime duration. The main program places these processes
in a queue, and in each iteration one process will be taken from
the queue and placed into a slot in memory that is able to fit the
size of the process. If there are no slots available that is large
enough, the process will be returned to the queue, and the
program will try inserting the next process in the queue into
memory. This process will keep repeating until the given process
queue is empty.

B. The Process Class

Since this simulation will be performing memory allocations
on processes, there of course needs to be an implementation of
a certain process component. The process, implemented as a
class, will be the functional unit of the simulation.

Fig. 6. Implementation of the process class.

Source: Personal documentation

Fig. 4 shows the basic structure of the process class used for
memory allocations. The attributes of the process class, ones of
which are important, are as follows:

• PID: The process ID, functions as metadata of the
process, simply for identification purposes. The PID of a
process given by the program will be based on the order
of the process in the given memory pool.

• Size: The size of the process, in bytes. This size attribute
will determine the hole that is allocated to the process in
memory. If the hole is too small, it cannot fit the process,
and thus the program will check the next hole available,
until it finds a hole that fits the process. If the memory
currently does not have a hole that is big enough, the
process will be inserted back to the end of the process
queue.

• Time: The time required for the process to finish its task.
This time attribute will determine how long the process
lives in memory. The main effect of this attribute is that
the longer the duration of the task, the longer the process
will consume the allocated memory space, and the longer
other processes would have to wait to be able to use the
allocated space.

• Memory: This is not an actual attribute of the process
itself, but simply a pointer to the memory variable. This
is such that the process class is able to call the methods
of the memory, specifically for allocation and
deallocation.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

An instantation of a process can be created using the process
constructor, also given in Fig. 4. When a process is created, its
PID, size, and runtime duration will be instantly set, and cannot
be changed. The numbers for these attributes will be stored in a
separate .txt file, which contains all the processes that will be
used in a certain experiment run.

Fig. 7. Code for simulating a running process.

Source: Personal documentation

When the program finds a fitting slot in memory and places
the process in that memory slot, it will simulate a running
process, which in this simulation is simply just creating a new
thread that sleeps for the given runtime duration of the process.

The allocation, which is searching for the fitting slot in
memory for the process, will be done in the main program and
thus is not of concern of the process class. Memory deallocation,
though, is of concern, because when the memory is deallocated
is based on when the process will finish its task. That event
happens after the process thread has slept for the given runtime
duration, thus in the run code block for the process, it will call
the deallocate method on the memory after it has finished
running.

C. The Memory Interface

Fig. 8. Memory interface for both memory allocation implementations.

Source: Personal documentation

Because of the existence of two implementations of memory
allocation methods in this simulation, there will be a need to
create classes for both methods. But they both should be pretty
similar to each other, only differing in its allocation and
deallocation algorithms, and thus the main program and
processes would need a common interface that can access both
classes, else there will be code redundancy introduced.

Thus, Fig. 6. shows the memory interface that will be
implemented by both allocation methods. The interface is
relatively simple and only includes two main methods, an
allocate method and a deallocate method, since these two
procedures are mainly where the allocation algorithms differ.

D. Standard Memory Allocation Method

Fig. 9. Implementation of the memory class.

Source: Personal documentation

After an implementation of a process class, there of course
needs to be implementation of a memory class. This class not
only holds the contiguous array of memory in the simulation, but
also the methods and algorithms for allocation and deallocation
of the memory, as given in the memory interface.

The memory class given in Fig.7 will be one of two classes
of memory, with this one implementing the standard first-fit
algorithm for memory allocation. With this class of memory,
processes will be allocated to the first hole that can fit the size of
that process.

The contiguous bytes of memory will be stored in the
memory attribute of the class, which is implemented as an array
of char. Each index of this array can be one of two values, empty
or allocated, with empty slots being marked as ‘.’, and allocated
slots being marked as ‘X’. Slots of the array that is being used
by a process will be marked as allocated, and slots not being used
will be marked as empty.

There is also an allocated attribute, implemented as a map,
to keep track of how many processes is allocating memory. The
key to this map is the PID of a certain process, and the value is
the starting address in memory of that process. Thus it can easily
be located in what address a certain process resides. This
allocated map will be mainly used for deallocation. When a
process is finished running and deallocates memory, its PID is
used as a key to the map, which will return the starting address
of the allocation, and along with the size of the process, the
amount of slots to deallocate from memory can be known.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

The constructor for the class has as a parameter a size value,
which will determine the size of the array of memory in bytes.
Once the array has been allocated, all of its slots will be filled
with the empty slot value.

(a)

(b)

Fig. 10. Implementation of the memory allocation algorithm, (a) Finding the

appropriate slot, (b) Allocating the slot if found

Source: Personal documentation

Fig. 8 shows the implementation for allocating memory to a
process. As is the first-fit algorithm, it will start from the very
start of the array, iterating up until it finds a slot that is large
enough to store the given process. When the large enough hole
is found, it will set all the slots in the range of the size of the
process to be allocated, starting from the hole’s starting point.
The PID and start address pair will also be stored in the allocated
map.

Fig. 11. Implementation of memory deallocation

The procedure of memory deallocation of a process is fairly
simple. Because of the allocated map already defined
previously, deallocating a given process is simply just retrieving
its starting address in memory, and iterating as much as the
process size, turning all slots from allocated to empty. The
allocated process PID will also be removed from the allocated
map, hence freeing the slot in memory for other processes to use.

E. Buddy System Memory Allocation Method

Fig. 12. Implementation of a block in a Buddy System.

Source: Personal documentation

Since the Buddy System is a more complicated memory
allocation algorithm, working in blocks of powers of two,
implementation of it will be more complicated than the standard
algorithm’s implementation as well. To ease the process of
managing the allocation and deallocations of blocks, a
BuddyBlock class would need to be implemented first.

A buddy block class simply represents a block of memory,
having a size of a power of two. Defining a class for a block of
memory would obviously need to store its starting address and
its block size in its attributes, as given in Fig.10. An isAllocated
attribute is also defined, to differ between blocks that are being
used by a process, and blocks that are not being used.

The main feature of the Buddy System is that memory
consists of blocks that can be split into smaller blocks, and
smaller blocks that can be merged back into larger blocks. A
splitting of a block can be thought of as a block being split into
two childrens, one being the left half of the block, and one being
the right half of the block. Hence, the buddy block class can be
thought of as a binary tree node that can have a left child and a
right child.

Thus a buddy block will store its left and right childs in the
left and right attributes, respectively, as shown in Fig.10. These
children of a certain block will in turn store a reference to its
prent as one of its attributes, which will help during the merging
process. When two children of a block merges back to its parent,
both child blocks need to be empty and not allocated, hence the
buddy block class will also keep a reference to its buddy block
in its attributes, also for merging purposes.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig. 13. Implementation of the Buddy memory class.

Source: Personal documentation

The implementation for the Buddy memory class, in
structure, is not too far different from the standard memory class.
An array of char is still used to represent contiguous bytes of
memory, with each slot being either empty or allocated, an a map
of allocated processes is also stored. The difference here is that
the allocated map stores a Buddy block as its value instead of a
starting address, for a certain PID. The class also stores the root
block of the memory system, which can be though of as the root
node in the binary tree that is the memory blocks.

Fig. 14. Implementation of finding a free block in the memory tree.

Source: Personal documentation

The biggest difference in this new Buddy memory class is,
of course, the allocation and deallocation algorithms. Though
with allocation, the big difference mostly comes from how to
find the free block for the process.

Because memory in the Buddy system is treated as a binary
tree, searching for a free block transforms from a sequential
search problem to a tree traversal problem, which is now solved
recursively as shown in Fig. 12. We first determine whether a
given block fits to be used or not, and if it is still big enough, we
split the block if it’s a leaf node, and if it’s not a leaf node, we
recursively search through its left and right children.

Fig. 15. Implementation of merging two blocks.

Source: Personal documentation

Deallocation remains fairly similar to the standard algorithm,
with the distinction that if two buddy blocks are completely
deallocated, it should be merged back into one block such that
larger processes can use those blocks again. The merging of
blocks here, just like block searching and splitting, is done
recursively to a block’s parent until no more merging can be
done.

IV. RESULTS AND ANALYSIS

With the data structures and algorithms of the
implementation already being established, this paper will now
begin to run the simulation program to experiment on the
efficiencies of both memory allocation methods. We begin by
demonstrating how the simulation of both algorithms work to
handle a memory of queueing processes.

A. Running the Simulation

Fig. 16. An empty memory with no allocated processes.

Source: Personal documentation

Fig. 14 shows a newly created memory with no allocated
processes. This memory is at its maximum capacity and can hold
1024 bytes of process data.

Fig. 17. The first process is allocated to the start of the memory array.

Source: Personal documentation

When the first process in the queue requests for memory, it
is allocated to the start of the memory array, since currently the

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

entire memory is one large hole, and the process is allocated to
the start of that hole. The allocation of that process is symboled
by the yellow X’s in the memory array.

Fig. 18. The state of the memory array after a few seconds

Source: Personal documentation

Processes from the queue will continue to be allocated to
memory, after which the process will execute for a certain
amount of duration, and then finish and deallocate its memory
for other processses to use.

After a large amount of allocating and deallocating, many
processes will be scattered around the memory array with lots of
holes in-between two processes, indicating a previous process
that has finished executing and deallocated its memory. The
illustration of such a state is given in Fig.16.

Fig. 19. Allocations of blocks in the block tree of the Buddy allocation

system.

Source: Personal documentation

The behavior of the Buddy memory allocation system when
given a pool of queueing processes is more or less the same, with
the key difference being that processes are only allocated
starting at addresses of powers-of-two. Fig. 17 showcases how
the block tree is generated given requests for processes, with
green nodes indicating that they are allocated to processes, and
red nodes indicating that they are free. Notice how green nodes

are always at the leaf nodes, since it is impossible for a block to
be allocated and yet have children blocks at the same time.

B. Testing the Efficiencies of Both Algorithms

We are now ready to test the efficiencies of allocation for
both algorithms. The mechanisms of the test are as follows:

• Given a pool of 500 processes, the program will test both
algorithms for allocating memory to all of these
processes until the pool is empty.

• The processes will have varying values of size and
runtime duration. These values have been generated
beforehand and stored in a .txt file, thus testing for both
algorithms will use the same pool of processes for a given
run.

• For every process, the amount of time taken to allocate
memory for it will be taken into account. The average
time taken for both algorithms will be compared in the
end of the experiment.

Given these conditions, for a set memory buffer size of 8192
bytes, and running the experiment on 10 times each with its own
pool of randomly generated processes, the following data for
average time allocation is discovered.

TABLE I. AVERAGE ALLOCATION TIME OF BOTH ALGORITHMS

Test

No.

Average Allocation Time (ns)

Standard Buddy Diff.

1 34.561 17.283 17.278

2 44.512 19.425 25.087

3 32.561 23.415 9.146

4 46.541 24.331 22.210

5 49.813 21.241 28.572

6 37.424 27.382 10.042

7 39.414 29.213 10.201

8 41.398 17.325 24.073

9 44.324 19.419 24.905

10 38.321 22.214 16.107

As shown in Table I, in all experiments it is shown that the
Buddy system has faster allocation times than the standard
allocation system. The difference between the standard
allocation times and the Buddy allocation times has an average
of 18.762 ns, implying that based on the test results, the Buddy
allocation system will be 18 nanoseconds faster in memory
allocation than the standard first-fit memory allocation system.

This makes sense when we consider the types of algorithms
that these methods use. The first-fit algorithm can be thought of
as a sequential search in an array, typically having O(n) time
complexities. The Buddy System, meanwhile, uses a divide and
conquer approach, typically having O(log n) time complexities.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

It should be noted, though, that the unit of time used in these
experiments is the nanosecond (ns), a very small unit of
measurement. This experiment is, however, about the time taken
for a single memory allocation. In a typical computer system
used day-to-day, a computer might need to complete millions of
memory allocations per second, and thus the very small time
differences will slowly build up into huge performance
differences.

CONCLUSION

From the results of the experiment on algorithm efficiency,
it has been shown that the Buddy System performs memory
allocations more efficiently than the standard memory allocation
algorithm. This proves that a different choice of algorithm can
bring a huge impact on efficiencies of solutions. Memory
allocation using the Buddy System is just one example of the
applications of the divide and conquer algorithm to increase
efficiency in solving problems. The reasonable takeaway from
this study is that a deep understanding of algorithms is an
important aspect of computer science and related fields.

ACKNOWLEDGMENT

The author would like to deeply thank Mr. Dr. Ir. Rinaldi
Munir, M.T., and Mr. Monterico Adrian, S.T., M.T. as the
author’s lecturers of the Algorithmic Strategies course, and by
extension, the entire Algorithmic Strategies staff, consisting of
lecturers and assistants, for giving the author a chance to not
only deepen their knowledge of the field, but to conduct this
study as well. Lastly, but certainly not least, the author would
like to thank their friends and families, for always giving them
support and always being present while going through every
hardship experienced in the process of conducting their study as
well as writing this academic paper.

REFERENCES

[1] Stallings, W. (2013). Operating Systems: Internals and Design Principles,
Seventh Edition. Pearson Education Limited.

[2] Divide and Conquer Introduction, https://www.javatpoint.com/divide-
and-conquer-introduction. Accessed June 12th 2024.

[3] Memory Hierarchy,
https://www.cs.swarthmore.edu/~kwebb/cs31/f18/memhierarchy/mem_h
ierarchy.html. Accessed June 12th 2024.

[4] What is Contiguous Memory, https://awaitdeveloper.medium.com/what-
is-contiguous-memory-222f58f28079. Accessed June 12th 2024.

[5] Arrays vs. Lists, https://alirezafarokhi.medium.com/array-vs-list-
compare-array-and-list-performance-in-c-722316603c8c. Accessed June
12th 2024.

[6] What is Buddy System, https://www.javatpoint.com/what-is-buddy-
system/. Accessed June 12th 2024.

STATEMENT

I hereby declare that this paper I have written is my own work,

not a translation or adaptation of someone else's paper, and is

not plagiarized.

Bandung, 12 Juni 2024

Muhammad Rasheed Qais Tandjung

13522158

https://www.javatpoint.com/divide-and-conquer-introduction
https://www.javatpoint.com/divide-and-conquer-introduction
https://www.cs.swarthmore.edu/~kwebb/cs31/f18/memhierarchy/mem_hierarchy.html
https://www.cs.swarthmore.edu/~kwebb/cs31/f18/memhierarchy/mem_hierarchy.html
https://awaitdeveloper.medium.com/what-is-contiguous-memory-222f58f28079
https://awaitdeveloper.medium.com/what-is-contiguous-memory-222f58f28079
https://alirezafarokhi.medium.com/array-vs-list-compare-array-and-list-performance-in-c-722316603c8c
https://alirezafarokhi.medium.com/array-vs-list-compare-array-and-list-performance-in-c-722316603c8c
https://www.javatpoint.com/what-is-buddy-system/
https://www.javatpoint.com/what-is-buddy-system/

	I. Introduction
	II. Theoretical Framework
	A. Divide and Conquer
	B. CPU Execution and the Memory Hierarchy
	C. Main Memory
	D. Buddy System

	III. Methodology
	A. Overview of Simulation
	B. The Process Class
	C. The Memory Interface
	D. Standard Memory Allocation Method
	E. Buddy System Memory Allocation Method

	IV. Results and Analysis
	A. Running the Simulation
	B. Testing the Efficiencies of Both Algorithms
	Conclusion
	Acknowledgment
	References

